A prominent paradigm for graph neural networks is based on the message passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate \textit{long distance communication} between nodes, as deep convolutional networks are prone to over-smoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE), with a learnable time parameter. Our approach allows to adapt the spatial extent of diffusion across different tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture directly enables local message passing and thus inherits from the expressive power of local message passing approaches. We show that on widely used graph benchmarks we achieve comparable performance and on a synthetic mesh dataset we outperform state-of-the-art methods like GCN or GRAND by a significant margin.
translated by 谷歌翻译
多模式数据通过将来自来自各个域的数据与具有非常不同的统计特性的数据集成来提供自然现象的互补信息。捕获多模式数据的模态和跨换体信息是多模式学习方法的基本能力。几何感知数据分析方法通过基于其几何底层结构隐式表示各种方式的数据来提供这些能力。此外,在许多应用中,在固有的几何结构上明确地定义数据。对非欧几里德域的深度学习方法是一个新兴的研究领域,最近在许多研究中被调查。大多数流行方法都是为单峰数据开发的。本文提出了一种多模式多缩放图小波卷积网络(M-GWCN)作为端到端网络。 M-GWCN同时通过应用多尺度图小波变换来找到模态表示,以在每个模态的图形域中提供有用的本地化属性,以及通过学习各种方式之间的相关性的学习置换的跨模式表示。 M-GWCN不限于具有相同数量的数据的均匀模式,或任何指示模式之间的对应关系的现有知识。已经在三个流行的单峰显式图形数据集和五个多模式隐式界面进行了几个半监督节点分类实验。实验结果表明,与光谱图域卷积神经网络和最先进的多模式方法相比,所提出的方法的优越性和有效性。
translated by 谷歌翻译